Built-in datasets¶
spm1d comes packages with a variety of 0D and 1D datasets located in ./spm1d/data.
This document provides a brief overview of the built-in datasets.
To explore the datasets please use the scripts in spm1d/examples.
Loading datasets¶
All datasets can be accessed using the following syntax:
>>> dataset = spm1d.data.uv0d.anova1.Cars()
>>> data = dataset.get_data()
where:
spm1d.data.
uv0d
refers to univariate zero-dimensional dataspm1d.data.uv0d.
anova1
refers to the type of statistical testdataset.
get_data()
extracts only the variable needed for the given test
NOTES:
For access to univariate 1D datasets, and multivariate 0D and 1D datasets, use spm1d.data.uv1d, spm1d.data.mv0d and spm1d.data.mv1d, respectively.
The datasets contain a variety of other variables including web links and expected results.
Dataset details¶
spm1d no longer provides detailed dataset descriptions.
Instead users should consult the references and web links provided with each dataset as follows:
>>> dataset = spm1d.data.uv0d.anova1.Cars()
>>> print( dataset )
The result will look something like this:
Dataset
Name : "Cars"
Design : One-way ANOVA
Data dim : 0
Web : http://cba.ualr.edu/smartstat/topics/anova/example.pdf
(Expected results)
F : 25.17
df : (2, 6)
p : 0.001207
Checking expected results¶
The expected results shown in the example above can be corroborated against spm1d’s calculations as follows:
>>> dataset = spm1d.data.uv0d.anova1.Cars()
>>> Y,A = dataset.get_data()
>>> F = spm1d.stats.anova1(Y, A, equal_var=True)
>>> Fi = F.inference(0.05)
>>> print( Fi )
Here Y and A are both 9-component vectors, where Y represents the observations and where A continains integers which indicate groups.
The spm1d result is:
SPM{F} (0D) inference
SPM.z : 25.17541
SPM.df : (2, 6)
Inference:
SPM.alpha : 0.050
SPM.zstar : 5.14325
SPM.h0reject : True
SPM.p : 0.00121
Note that the F statistic (SPM.z), degrees of freedom (SPM.df) and p value (SPM.p) match the expected dataset results.
The critical test statistic threshold at alpha (SPM.zstar) is not typically reported, but is an essential component of 1D analyses so is also presented in 0D results for comparisons between 0D and 1D critical thresholds.
Notes on 1D datasets¶
Warning
Only 0D datasets contain expected results.
For one-dimensional result verifications refer to the references provided.
For example:
>>> dataset = spm1d.data.uv1d.anova2.Besier2009kneeflexion()
>>> Y,A,B = dataset.get_data() #A:foot, B:speed
>>> print( dataset )
This will yield:
Dataset
Name : "Besier2009kneeflexion"
Design : Two-way ANOVA
Data dim : 1
Reference : Besier, T. F., Fredericson, M., Gold, G. E., Beaupré, G. S., & Delp, S. L. (2009). Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. Journal of Biomechanics, 42(7), 898–905. http://doi.org/10.1016/j.jbiomech.2009.01.032
Web : https://simtk.org/home/muscleforces
Data file : /Users/todd/Documents/Python/myLibraries/spm1d/data/datafiles/Besier2009kneeflexion.npz
Results : Pataky, T. C., Vanrenterghem, J., & Robinson, M. A. (2015). Two-way ANOVA for scalar trajectories, with experimental evidence of non-phasic interactions. Journal of Biomechanics, 48(1), 186–189. http://doi.org/10.1016/j.jbiomech.2014.10.013
(Expected results)
F : None
df : None
p : None