'''
High-level ANOVA user interface using an R-like aov function.
'''
# Copyright (C) 2016 Todd Pataky
import warnings
import numpy as np
from . import designs,models
from .. import _datachecks, _reml, _spm, _spmlist
def aov(model, contrasts, f_terms, nFactors=1):
'''
This code is modified from statsmodels.stats.anova_lm
'''
effects = np.asarray( np.dot(model.QT, model.Y) )
if model.dim==0:
effects = effects.flatten()
SS = np.dot(contrasts.C, effects**2)
DF = np.asarray(contrasts.C.sum(axis=1), dtype=int)
F = []
for term0,term1 in f_terms:
i = contrasts.term_labels.index(term0)
ss0,df0 = SS[i], DF[i]
ms0 = ss0 / df0
if term1 == 'Error':
ss1,df1,ms1 = model._SSE, model._dfE, model._MSE
else:
i = contrasts.term_labels.index(term1)
ss1,df1 = SS[i], DF[i]
ms1 = ss1 / df1
f = ms0 / ms1
if model.dim == 0:
F.append( _spm.SPM0D_F(f, (df0,df1), (ss0,ss1), (ms0,ms1), model.eij, model.QT) )
else:
if model.roi is not None:
f = np.ma.masked_array(f, np.logical_not(model.roi))
F.append( _spm.SPM_F(f, (df0,df1), model.fwhm, model.resels, model.X, model._beta, model.eij, model.QT, roi=model.roi) )
return _spmlist.SPMFList( F, nFactors=nFactors )
### ONE-WAY DESIGNS ##############
[docs]def anova1(Y, A=None, equal_var=False, roi=None):
'''
One-way ANOVA.
:Parameters (Option 1):
- *Y* --- A list or tuple of (J x Q) numpy arrays
- *equal_var* --- If *True*, equal group variance will be assumed
:Parameters (Option 2):
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer group labels
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- F : An **spm1d._spm.SPM_F** instance
:Example:
>>> F = spm1d.stats.anova1((Y0,Y1,Y2))
>>> Fi = F.inference(alpha=0.05)
>>> Fi.plot()
'''
if isinstance(Y, (list,tuple)):
_datachecks.check('anova1list', Y)
A = np.hstack([[i]*y.shape[0] for i,y in enumerate(Y)])
Y = np.hstack(Y) if Y[0].ndim==1 else np.vstack(Y)
else:
_datachecks.check('anova1', Y, A)
design = designs.ANOVA1(A)
model = models.LinearModel(Y, design.X, roi=roi)
model.fit()
F = aov(model, design.contrasts, design.f_terms, nFactors=1)[0]
if not equal_var:
warnings.warn('\nWARNING: Non-sphericity corrections for one-way ANOVA are currently approximate and have not been verified.\n', UserWarning, stacklevel=2)
Y,X,r = model.Y, model.X, model.eij
Q,C = design.A.get_Q(), design.contrasts.C.T
F.df = _reml.estimate_df_anova1(Y, X, r, Q, C)
return F
[docs]def anova1rm(Y, A, SUBJ, equal_var=True, roi=None, _force_approx0D=False):
'''
One-way repeated-measures ANOVA.
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer group labels
- *SUBJ* --- (J x 1) vector of subject labels
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- F : An **spm1d._spm.SPM_F** instance
:Example:
>>> Y = np.random.randn(9, 101)
>>> A = np.array([1,1,1, 2,2,2, 3,3,3])
>>> SUBJ = np.array([1,2,3, 1,2,3, 1,2,3])
>>> F = spm1d.stats.anova1(Y, A, SUBJ)
>>> Fi = F.inference(alpha=0.05)
>>> Fi.plot()
'''
if not equal_var:
raise( NotImplementedError( 'Non-sphericity corrections are not yet implemented. Set "equal_var" to "True" to force an assumption of equal variance.' ) )
design = designs.ANOVA1rm(A, SUBJ)
model = models.LinearModel(Y, design.X, roi=roi)
if ((model.dim == 1) or _force_approx0D) and ( design.check_for_single_responses(dim=model.dim) ):
model.fit( approx_residuals=design.contrasts.C[:3] )
else:
model.fit( )
F = aov(model, design.contrasts, design.f_terms, nFactors=1)[0]
return F
### TWO-WAY DESIGNS ##############
def _set_labels(FF, design):
FF.set_design_label( design.__class__.__name__ )
FF.set_effect_labels( design.effect_labels )
# [F.set_effect_label(label) for F,label in zip(FF, design.effect_labels)]
[docs]def anova2(Y, A, B, equal_var=True, roi=None):
'''
Two-way ANOVA.
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer labels for Factor A
- *B* --- (J x 1) vector of integer labels for Factor B
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- List of three **spm1d._spm.SPM_F** instances in the following order:
1. Main effect A
2. Main effect B
3. Interaction AB
'''
if not equal_var:
raise( NotImplementedError( 'Non-sphericity corrections are not yet implemented. Set "equal_var" to "True" to force an assumption of equal variance.' ) )
design = designs.ANOVA2(A, B)
model = models.LinearModel(Y, design.X, roi=roi)
model.fit()
F = aov(model, design.contrasts, design.f_terms, nFactors=2)
_set_labels( F, design )
# if not equal_var:
# Y,X,r = model.Y, model.X, model.eij
# QA,QB,C = design.A.get_Q(), design.B.get_Q(), design.contrasts.C.T
# Q = QA + QB
# u1,u2 = _reml.estimate_df_anova2(Y, X, r, Q, C)
# for ff,u in zip(f,u1):
# ff.df = u,u2
return F
[docs]def anova2nested(Y, A, B, equal_var=True, roi=None):
'''
Two-way nested ANOVA.
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer labels for Factor A
- *B* --- (J x 1) vector of integer labels for Factor B (nested in A)
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- List of two **spm1d._spm.SPM_F** instances in the following order:
1. Main effect A
2. Main effect B
:Note:
- there is no interaction term in nested designs.
'''
if equal_var is not True:
raise( NotImplementedError('Non-sphericity correction not implemented. To continue you must assume equal variance and set "equal_var=True".') )
design = designs.ANOVA2nested(A, B)
model = models.LinearModel(Y, design.X, roi=roi)
model.fit()
F = aov(model, design.contrasts, design.f_terms, nFactors=2)
_set_labels( F, design )
return F
[docs]def anova2rm(Y, A, B, SUBJ, equal_var=True, roi=None, _force_approx0D=False):
'''
Two-way repeated-measures ANOVA.
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer labels for Factor A
- *B* --- (J x 1) vector of integer labels for Factor B
- *SUBJ* --- (J x 1) vector of integer subject labels
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- List of three **spm1d._spm.SPM_F** instances in the following order:
1. Main effect A
2. Main effect B
3. Interaction AB
:Note:
- Non-sphericity correction not implemented. Equal variance must be assumed by setting "equal_var=True".
'''
if equal_var is not True:
raise( NotImplementedError('Non-sphericity correction not implemented. To continue you must assume equal variance and set "equal_var=True".') )
design = designs.ANOVA2rm(A, B, SUBJ)
model = models.LinearModel(Y, design.X, roi=roi)
if ((model.dim == 1) or _force_approx0D) and ( design.check_for_single_responses(dim=model.dim) ):
model.fit( approx_residuals=design.contrasts.C[:5] )
else:
model.fit( )
F = aov(model, design.contrasts, design.f_terms, nFactors=2)
_set_labels( F, design )
# if not equal_var:
# Y,X,r = solver.Y, solver.X, solver.eij
# QA,QB,C = design.A.get_Q(), design.B.get_Q(), [c.C.T for c in design.contrasts]
# Q = QA + QB
# u1,u2 = _reml.estimate_df_anova2(Y, X, r, Q, C)
# for ff,u in zip(f,u1):
# ff.df = u,u2
return F
[docs]def anova2onerm(Y, A, B, SUBJ, equal_var=True, roi=None, _force_approx0D=False):
'''
Two-way ANOVA with repeated-measures on one factor.
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer labels for Factor A
- *B* --- (J x 1) vector of integer labels for Factor B (the repeated-measures factor)
- *SUBJ* --- (J x 1) vector of integer subject labels
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- List of three **spm1d._spm.SPM_F** instances in the following order:
1. Main effect A
2. Main effect B
3. Interaction AB
:Note:
- Non-sphericity correction not implemented. Equal variance must be assumed by setting "equal_var=True".
'''
if equal_var is not True:
raise( NotImplementedError('Non-sphericity correction not implemented. To continue you must assume equal variance and set "equal_var=True".') )
design = designs.ANOVA2onerm(A, B, SUBJ)
model = models.LinearModel(Y, design.X, roi=roi)
if ((model.dim == 1) or _force_approx0D) and ( design.check_for_single_responses(dim=model.dim) ):
model.fit( approx_residuals=design.contrasts.C[:5] )
else:
model.fit( )
F = aov(model, design.contrasts, design.f_terms, nFactors=2)
_set_labels( F, design )
return F
### THREE-WAY DESIGNS ##############
[docs]def anova3(Y, A, B, C, equal_var=True, roi=None):
'''
Three-way ANOVA.
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer labels for Factor A
- *B* --- (J x 1) vector of integer labels for Factor B
- *C* --- (J x 1) vector of integer labels for Factor C
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- List of seven **spm1d._spm.SPM_F** instances in the following order:
1. Main effect A
2. Main effect B
3. Main effect C
4. Interaction AB
5. Interaction AC
6. Interaction BC
7. Interaction ABC
'''
if equal_var is not True:
raise( NotImplementedError('Non-sphericity correction not implemented. To continue you must assume equal variance and set "equal_var=True".') )
design = designs.ANOVA3(A, B, C)
model = models.LinearModel(Y, design.X, roi=roi)
model.fit()
F = aov(model, design.contrasts, design.f_terms, nFactors=3)
_set_labels( F, design )
return F
# if not equal_var:
# Y,X,r = solver.Y, solver.X, solver.eij
# QA,QB,QC,C = design.A.get_Q(), design.B.get_Q(), design.C.get_Q(), [c.C.T for c in design.contrasts]
# Q = QA + QB + QC
# u1,u2 = _reml.estimate_df_anova2(Y, X, r, Q, C)
# for ff,u in zip(f,u1):
# ff.df = u,u2
# return f
[docs]def anova3nested(Y, A, B, C, equal_var=True, roi=None):
'''
Three-way fully nested ANOVA.
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer labels for Factor A
- *B* --- (J x 1) vector of integer labels for Factor B (nested in A)
- *C* --- (J x 1) vector of integer labels for Factor C (nested in B)
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- List of three **spm1d._spm.SPM_F** instances in the following order:
1. Main effect A
2. Main effect B
3. Main effect C
:Note:
- there are no interaction terms in fully-nested designs.
'''
if equal_var is not True:
raise( NotImplementedError('Non-sphericity correction not implemented. To continue you must assume equal variance and set "equal_var=True".') )
design = designs.ANOVA3nested(A, B, C)
model = models.LinearModel(Y, design.X, roi=roi)
model.fit()
F = aov(model, design.contrasts, design.f_terms, nFactors=3)
_set_labels( F, design )
return F
def anova3rm(Y, A, B, C, SUBJ, equal_var=True, roi=None, _force_approx0D=False):
'''
Three-way ANOVA (repeated measures on all factors).
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer labels for Factor A
- *B* --- (J x 1) vector of integer labels for Factor B
- *C* --- (J x 1) vector of integer labels for Factor C
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- List of seven **spm1d._spm.SPM_F** instances in the following order:
1. Main effect A
2. Main effect B
3. Main effect C
4. Interaction AB
5. Interaction AC
6. Interaction BC
7. Interaction ABC
'''
if equal_var is not True:
raise( NotImplementedError('Non-sphericity correction not implemented. To continue you must assume equal variance and set "equal_var=True".') )
design = designs.ANOVA3rm(A, B, C, SUBJ)
model = models.LinearModel(Y, design.X, roi=roi)
if ((model.dim == 1) or _force_approx0D) and ( design.check_for_single_responses(dim=model.dim) ):
model.fit( approx_residuals=design.contrasts.C[:8] )
else:
model.fit( )
F = aov(model, design.contrasts, design.f_terms, nFactors=3)
_set_labels( F, design )
return F
[docs]def anova3onerm(Y, A, B, C, SUBJ, equal_var=True, roi=None, _force_approx0D=False):
'''
Three-way ANOVA with repeated-measures on one factor.
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer labels for Factor A
- *B* --- (J x 1) vector of integer labels for Factor B
- *C* --- (J x 1) vector of integer labels for Factor C (the repeated-measures factor)
- *SUBJ* --- (J x 1) vector of integer subject labels
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- List of seven **spm1d._spm.SPM_F** instances in the following order:
1. Main effect A
2. Main effect B
3. Main effect C
4. Interaction AB
5. Interaction AC
6. Interaction BC
7. Interaction ABC
:Note:
- Non-sphericity correction not implemented. Equal variance must be assumed by setting "equal_var=True".
'''
if equal_var is not True:
raise( NotImplementedError('Non-sphericity correction not implemented. To continue you must assume equal variance and set "equal_var=True".') )
design = designs.ANOVA3onerm(A, B, C, SUBJ)
model = models.LinearModel(Y, design.X, roi=roi)
if ((model.dim == 1) or _force_approx0D) and ( design.check_for_single_responses(dim=model.dim) ):
model.fit( approx_residuals=design.contrasts.C[:8] )
else:
model.fit( )
F = aov(model, design.contrasts, design.f_terms, nFactors=3)
_set_labels( F, design )
return F
[docs]def anova3tworm(Y, A, B, C, SUBJ, equal_var=True, roi=None, _force_approx0D=False):
'''
Three-way ANOVA with repeated-measures on two factors.
:Parameters:
- *Y* --- (J x Q) numpy array
- *A* --- (J x 1) vector of integer labels for Factor A
- *B* --- (J x 1) vector of integer labels for Factor B (a repeated-measures factor)
- *C* --- (J x 1) vector of integer labels for Factor C (a repeated-measures factor)
- *SUBJ* --- (J x 1) vector of integer subject labels
- *equal_var* --- If *True*, equal group variance will be assumed
:Returns:
- List of seven **spm1d._spm.SPM_F** instances in the following order:
1. Main effect A
2. Main effect B
3. Main effect C
4. Interaction AB
5. Interaction AC
6. Interaction BC
7. Interaction ABC
:Note:
- Non-sphericity correction not implemented. Equal variance must be assumed by setting "equal_var=True".
'''
if equal_var is not True:
raise( NotImplementedError('Non-sphericity correction not implemented. To continue you must assume equal variance and set "equal_var=True".') )
design = designs.ANOVA3tworm(A, B, C, SUBJ)
model = models.LinearModel(Y, design.X, roi=roi)
if ((model.dim == 1) or _force_approx0D) and ( design.check_for_single_responses(dim=model.dim) ):
model.fit( approx_residuals=design.contrasts.C[:8] )
else:
model.fit( )
F = aov(model, design.contrasts, design.f_terms, nFactors=3)
_set_labels( F, design )
return F