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DESCRIPTION  

 
Overview—  Statistical Parametric Mapping (SPM) [1] was 

developed in Neuroimaging in the mid 1990s [2], primarily 

for the analysis of 3D fMRI and PET images, and has 

recently appeared in Biomechanics for a variety of 

applications with dataset types ranging from kinematic and 

force trajectories [3] to plantar pressure distributions [4] 

(Fig.1) and cortical bone thickness  fields [5]. 

 

SPM’s fundamental observation unit is the “mDnD” 

continuum, where m and n are the dimensionalities of the 

observed variable and spatiotemporal domain, respectively, 

making it ideally suited for a variety of biomechanical 

applications including: 

• (m=1, n=1)   Joint flexion trajectories 

• (m=3, n=1)   Three-component force trajectories 

• (m=1, n=2)   Contact pressure distributions 

• (m=6, n=3)   Bone strain tensor fields. 

 

SPM handles all data types in a single, consistent statistical 

framework, generalizing to arbitrary data dimensionalities 

and geometries through Eulerian topology.  

 

Although SPM may appear complex it is relatively easy to 

show that SPM reduces to common software 

implementations (SPSS, R, MATLAB, etc.) when m=1 and 

n=0.  Identically, it is conceptually easy to show how 

common tests, ranging from t tests and regression to 

MANCOVA, all generalize to SPM when one’s data move 

from 0D scalars (1D0D) to mDnD continua (Table 1).   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  SPM first made the jump from Neuroimaging (a) 

to Biomechanics (b) in 2008 in plantar pressure analysis [5] 

and has since emerged in a variety of biomechanics 

applications including: kinematics/ force trajectory analysis 

and finite element modeling.  SPM using topological 

inference to identify continuum regions (depicted as warm 

colors) that significantly co-vary with an experimental 

design.  

 

Table 1:  Many types of biomechanical data are mDnD, but 

most statistical tests in the literature are 1D0D: t tests, 

regression and ANOVA, and based on the relatively simple 

Gaussian distribution, despite nearly a century of theoretical 

development in mD0D and mDnD statistics. 

 

 0D data 1D data 
 Scalar Vector Scalar Vector 

 1D0D mD0D 1D1D mD1D 

Theory Gaussian 
Multivariate 

Gaussian 

Random Field 

Theory 

Applied 

T tests 

Regression 

ANOVA 

T2 tests 

CCA 

MANOVA 

SPM 

 

 

The purposes of this workshop are: 

 

1. To review SPM’s historical context. 

2. To demonstrate how SPM generalizes common tests 

(including t tests, regression and ANOVA) to the 

domain of mDnD data. 

3. To clarify potential pitfalls associated with the use of 

0D approaches to analyze nD data. 

4. To provide an overview of spm1d (www.spm1d.org), 

open-source software (Python, MATLAB) for the 

analysis of mD1D continua, and how it can be used to 

analyze a variety of biomechanical datasets. 

5. To discuss future directions for SPM in Biomechanics.  

 

 

Target Audience— Scientists, clinicians and engineers who 

deal with spatiotemporally continuous data, and all 

individuals interested in alternatives to simple classical 

hypothesis testing. 

 
Expected audience background—  

• Experience analyzing kinematics / dynamics time series 

• Basic familiarity with MATLAB 

• Familiarity with t tests, regression and ANOVA 

Additionally, advanced topics toward the end of the 

workshop will be directed toward attendees who have 

familiarity with or who are interested in: 

• Repeated measures modeling 

• Multivariate statistics 

• Bayesian modeling and analysis 

 

Learning Objectives— 

1) How and why SPM works:  its fundamental concepts. 

2) How to access and use spm1d software to conduct 

common analyses of 1D biomechanics data. 

3) How to interpret and report SPM results. 



 
PROGRAM 
 

Time Speaker Content 
0:00 – 0:30 Pataky Background & Theory 

0:30 – 1:00 Robinson Software 

1:00 – 1:30 Vanrenterghem Interpretation & Reporting 

1:30 – 1:45 Pataky Future Directions 

1:45 – 2:00 (None) Open Discussion 

 

(The last 5 minutes of each session will be devoted to Q&A) 

 
Background & Theory— First we promote critical thinking 

regarding statistics by interactively reviewing the meaning 

of experimentation, random sampling and probability 

values. Through random simulations of 0D data and 1D data 

we clarify that statistical tests, while used for experimental 

analyses, are more aptly summarized as descriptors of 

randomness. This will prepare attendees to make the 

apparent leap but actual small step into the world of SPM:  

by observing what 1D randomness looks like (Fig.2), and 

how it can be funneled into t tests, just like the 0D Gaussian, 

it will become easy for attendees to conceptually connect the 

simple t test to its nD SPM manifestations (Table 1). Just as 

t tests’ p values emerge directly from Gaussian theory, 

SPM’s p values emerge directly from RFT.  Coupled with 

an explanation of SPM’s evolution in both Neuroimaging 

and Biomechanics, attendees will understand that SPM 

represents a natural progression of classical statistics 

concepts. 

 

 

 

Figure 2:  Depiction of Random Field Theory’s model of 

1D randomness. Fluctuations about means are modeled as 

smooth continua, parameterized by the FWHM (full-width 

at half-maximum) of a Gaussian kernel which is convolved 

with pure 1D noise. As FWHM approaches ∞, the data 

approach 0D, and SPM results approach those from 

common software implementations.  By seeing how both 0D 

Gaussian data and these random can be routed into a t test, 

attendees will realize that t tests (and all other tests) simply 

funnel randomness into a test statistic, and thus the only 

difference between SPM and common 0D techniques is the 

form of randomness one assumes.   

 
 

 
Software— Procedural knowledge will be stressed through a 

Matlab demonstration of spm1d basics (www.spm1d.org), 

its relation to other software packages, and its broader 

capabilities. Data organization and tests’ optional 

parameters (e.g. one- vs. two-tailed, sphericity assumptions, 

etc.) will be described through example and with reference 

to online documentation.  Additionally, spm1d’s collection 

of real and simulated datasets will be introduced and 

explored. We’ll finally introduce spm1d’s online forums for 

free software support and general statistics discussion. 

 

   

 

 

 

Interpretation & Reporting— We will next guide attendees 

through experimental design, scientific interpretation and 

reporting of SPM results.  Necessary details including 

experimental design parameters, SPM-specific parameters, 

will be emphasized. Key literature references will be 

summarized. For a practical demonstration we will revisit 

some datasets from our own papers to discuss real Methods 

and Results reporting. We emphasize these points through 

hypothetical examples of bad SPM reporting. We finish by 

summarizing literature and internet resources for continued 

SPM learning. 

 

 

Future Directions— We will provide an update regarding 

spm1d’s current state, including a variety of functionality 

we have in the development pipeline including: normality, 

power analysis, and Bayesian inference.  We will also 

discuss spm1d’s possible expansion into the 2D and 3D 

domains, as a light-weight Biomechanics-friendly version of 

gold-standard Neuroimaging software.  We will also briefly 

revisit theory to summarize SPM’s relation to other whole-

dataset techniques from the Biomechanics literature 

including: principal components analysis, wavelet analysis 

and functional data analysis.  We will end with an open 

Q&A session regarding our spm1d software, SPM 

methodology in general, and other aspect of the workshop.  
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S  

P  

M 

STATISTICAL
Probabilistic inferences regarding
experimental data

PARAMETRIC
- Based on mean &   SD &   sample size
- Also non-parametric (SnPM)
- Parameterized model of cerebral blood flow

MAPPING
Results form an n-Dimensional “map”
in the same space as the original data  
(i.e. test statistics [t and F] are n-D continua)



n-D continua

Smooth, bounded



Univariate 0D Body mass 0D, 1D

Multivariate 0D GRF at t = 50 ms 0D, 3D

Univariate nD Foot pressure 2D, 1D

Multivariate nD Bone strain tensor 3D, 6D

Univariate 1D Knee flexion 1D, 1D

Multivariate 1D Knee posture 1D, 6D

n-D, m-D continua
continuum  dependent variable  

SPSS
MATLAB
R  



A brief history of SPM
1976   Adler & Hasofer, Annals of Prob. 

1990   Friston et al.  J Cerebral Blood Flow

1995   Friston et al.  Human Brain Mapping

2004   Worsley et al.  NeuroImage

2008 Pataky et al. New insights into the plantar pressure correlates 
of walking speed using pedobarographic statistical parametric mapping

J Biomech 41: 1987-1994.

8663 citations
H-index:      202

2009 Li et al. Identify fracture-critical regions inside the proximal 

femur using statistical parametric mapping, Bone 44: 596-602

i-10-index:  758





Example



What is a p value?

Demo



What is a p value?
The probability that a random 
process will yield a particular 
result.



Random
data Experiment p valueMetric

t valuetwo sample

Infinite set of experiments

One experiment



t and F values describe one experiment
p values describe the behavior of random 
data in an infinite set of experiments

Use nD random data to make probabilistic 
conclusions regarding nD experimental data



www.spm1d.org





spm1d.org/rft1d Pataky (2016)  J. Statistical Software





Statistics
• z

• t

• F

• 𝛘2

• T2

Distribution 
Functions

• probability density

• survival function

• inverse survival function



Science

Classical 
hypothesis 

testing

MANCOVA

Bayesian 

Engineering

Dimensionality 
reduction

PCA
ICA 

kPCA

Machine 
learning

ANN
SVM
SOM



www.spm1d.org



spm1d tutorial, ISB 2017
Mark A. Robinson
Liverpool John Moores University, UK
m.a.robinson@ljmu.ac.uk

This tutorial will focus on using the software and will cover:

1. getting "spm1d"
2. input data organisation
3. statistical tests: t-tests, regression, ANOVA, CCA
4. keywords
5. help
6. questions?

1. Software
"spm1d" is an open source package for one-dimensional Statistical
Parametric Mapping.

The current version is 0.4

The python code repository is: https://github.com/0todd0000/spm1d/
(https://github.com/0todd0000/spm1d/) 
The matlab code repository is:
https://github.com/0todd0000/spm1dmatlab
(https://github.com/0todd0000/spm1dmatlab)

2. Input data organisation

https://github.com/0todd0000/spm1d/
https://github.com/0todd0000/spm1dmatlab


2. Input data organisation
Univariate spm1d uses a (J x Q) array, where J is the number of 1D
responses (i.e. trials or subjects) and Q is the number of nodes in the 1D
continuum.

e.g. 10 subject means normalized to 101 nodes will give a
10x101 array

Multivariate spm1d analysis the data should be arranged as a (J x Q x I)
array, where I is the number of vector components in the 1D continuum.

e.g. 10 subject means normalized to 101 nodes for GRF
X,Y,Z, will give a 10x101x3 vector field

3. Statistical tests

a. 1D two-sample t-test

/examples/stats1d/ex1d_ttest2.m



In [2]:

% load some data
dataset = spm1d.data.uv1d.t2.PlantarArchAngle();
[YA,YB] = deal(dataset.YA, dataset.YB); 

dataset

This dataset has two variables both of size 10x101

spm1d has built in plotting functions for data e.g. plot_meanSD

dataset = 

  struct with fields:

    cite: 'Caravaggi, P., Pataky, T., G?nther, M., S
avage, R., & Crompton, R. (2010). Dynamics of longit
udinal arch support in relation to walking speed: co
ntribution of the plantar aponeurosis. Journal of An
atomy, 217(3), 254?261. http://doi.org/10.1111/j.146
9-7580.2010.01261.x'
      YA: [10×101 double]
      YB: [10×101 double]



In [3]:

% Plot the data
spm1d.plot.plot_meanSD(YA,'color','r');
hold on
spm1d.plot.plot_meanSD(YB,'color','b');



In [4]:

%(1) Conduct SPM analysis:
spm       = spm1d.stats.ttest2(YA, YB);
spmi      = spm.inference(0.05, 'two_tailed',true);
disp(spmi)

SPM{t} inference
         z: [1×101 double]
        df: [1 18]
      fwhm: 20.5956
    resels: [1 4.8554]
     alpha: 0.0500
     zstar: 3.2947
     p_set: 0.0312
         p: 0.0312



In [5]:

% Plot SPM analysis outcome
spmi.plot();
spmi.plot_threshold_label();
spmi.plot_p_values();



In [6]:

% For descriptive information about clusters
spmi.clusters{1,1}

b. 1D Linear Regression

/examples/stats1d/ex1d_regression.m

ans = 

  Cluster with properties:

    endpoints: [93.2746 100]
        csign: 1
    iswrapped: 0
       extent: 6.7254
      extentR: 0.3265
            h: 3.2947
           xy: [96.5343 4.5976]
            P: 0.0312



In [7]:

% Load example data
dataset = spm1d.data.uv1d.regress.SpeedGRF();
[Y,x]  = deal(dataset.Y, dataset.x);

dataset

dataset = 

  struct with fields:

    cite: 'Pataky, T. C., Caravaggi, P., Savage, R., 
Parker, D., Goulermas, J., Sellers, W., & Crompton, 
R. (2008). New insights into the plantar pressure co
rrelates of walking speed using pedobarographic stat
istical parametric mapping (pSPM). Journal of Biomec
hanics, 41(9), 1987?1994.'
       Y: [60×101 double]
       x: [60×1 double]



In [8]:

% Plot the GRF data
plot(Y');
xlabel('Stance %');
ylabel('Force (N/BW)');



In [9]:

subplot(221);
    scatter(x,Y(:,20));  title('20%');  xlabel('speed (m/s)');  yla
bel('Force (N/BW)'); lsline()
subplot(222);
    scatter(x,Y(:,50));  title('50%');  xlabel('speed (m/s)');  yla
bel('Force (N/BW)'); lsline()
subplot(223);
    scatter(x,Y(:,92));  title('92%');  xlabel('speed (m/s)');  yla
bel('Force (N/BW)'); lsline()



In [10]:

% Conduct SPM analysis:
spm       = spm1d.stats.regress(Y, x);
spmi      = spm.inference(0.05, 'two_tailed', true); 
disp(spmi)

SPM{t} inference
         z: [1×101 double]
        df: [1 58]
      fwhm: 6.1343
    resels: [1 16.3017]
     alpha: 0.0500
     zstar: 3.3945
     p_set: 4.0634e-14
         p: [0 0 0 0.0017]



In [11]:

% Plot SPM output 
spmi.plot();
spmi.plot_threshold_label();
spmi.plot_p_values();

c. ANOVA - between groups

/examples/stats1d/ex1d_anova1.m

In [12]:

% Load data:
dataset    = spm1d.data.uv1d.anova1.SpeedGRFcategorical();
[Y,A]      = deal(dataset.Y, dataset.A);



disp('Data Loaded')
dataset
 A

Data Loaded

dataset = 

  struct with fields:

    cite: 'Pataky, T. C., Caravaggi, P., Savage, R., 
Parker, D., Goulermas, J., Sellers, W., & Crompton, 
R. (2008). New insights into the plantar pressure co
rrelates of walking speed using pedobarographic stat
istical parametric mapping (pSPM). Journal of Biomec
hanics, 41(9), 1987?1994.'
       Y: [60×101 double]
       A: [60×1 uint8]

A =

  60×1 uint8 column vector

   3
   1
   1
   1
   3
   1
   1
   2
   2
   2
   3
   3



   2
   1
   3
   1
   3
   1
   3
   2
   1
   1
   3
   3
   3
   2
   3
   2
   2
   2
   2
   3
   1
   3
   3
   2
   2
   1
   2
   2
   2
   1
   2
   2
   1
   3
   3
   1



In [13]:

% Run SPM analysis
spm       = spm1d.stats.anova1(Y, A);
spmi      = spm.inference(0.05);
disp(spmi)

   1
   2
   2
   1
   1
   3
   2
   1
   1
   3
   3
   3

SPM{F} inference
         z: [1×101 double]
        df: [2 57]
      fwhm: 6.1179
    resels: [1 16.3455]
     alpha: 0.0500
     zstar: 7.5969
     p_set: 5.2921e-12
         p: [2.2204e-16 3.2533e-06]



In [14]:

% Plot
spmi.plot();
spmi.plot_threshold_label();
spmi.plot_p_values();



In [15]:

% Post-hoc Analysis

% separate into groups:
Y1         = Y(A==1,:);
Y2         = Y(A==2,:);
Y3         = Y(A==3,:);

% Conduct post-hoc analysis:
t21        = spm1d.stats.ttest2(Y2, Y1);
t32        = spm1d.stats.ttest2(Y3, Y2);
t31        = spm1d.stats.ttest2(Y3, Y1);

% inference:
alpha      = 0.05;
nTests     = 3;
p_critical = spm1d.util.p_critical_bonf(alpha, nTests);

t21i       = t21.inference(p_critical, 'two_tailed',true);
t32i       = t32.inference(p_critical, 'two_tailed',true);
t31i       = t31.inference(p_critical, 'two_tailed',true);



In [16]:

subplot(221);  t21i.plot(); title('t21')
subplot(222);  t32i.plot(); title('t32')
subplot(223);  t31i.plot(); title('t31')

d. Canonical Correlation Analysis

/examples/stats1d/ex1d_cca.m



In [17]:

%(0) Load data:
dataset    = spm1d.data.mv1d.cca.Dorn2012();
[Y,x]      = deal(dataset.Y, dataset.x);

dataset 
x

In [18]:

dataset = 

  struct with fields:

    cite: 'Dorn, T. W., Schache, A. G., & Pandy, M. 
G. (2012). Muscular strategy shift in human running: 
dependence of running speed on hip and ankle muscle 
performance. Journal of Experimental Biology, 215(11
), 1944?1956. http://doi.org/10.1242/jeb.064527'
     www: 'https://simtk.org/home/runningspeeds'
       Y: [8×100×3 double]
       x: [8×1 double]

x =

    3.5600
    3.5600
    5.2000
    5.2000
    7.0000
    7.0000
    9.4900
    9.4900



In [18]:

% Visualise this dataset
plot(Y(:,:,1)','r');
hold on
plot(Y(:,:,2)','g');
plot(Y(:,:,3)','b');
x

x =

    3.5600
    3.5600
    5.2000
    5.2000
    7.0000
    7.0000
    9.4900
    9.4900



In [19]:

%(1) Conduct SPM analysis:
spm       = spm1d.stats.cca(Y, x);
spmi      = spm.inference(0.05);
disp(spmi)

SPM{X2} inference
         z: [1×100 double]
        df: [1 3]
      fwhm: 8.8974
    resels: [1 11.1269]
     alpha: 0.0500
     zstar: 14.9752
     p_set: 5.6243e-10
         p: [3.3539e-05 1.2275e-06]



In [20]:

%(2) Plot
spmi.plot();
spmi.plot_threshold_label();
spmi.plot_p_values();

4. Keywords
Equality of variance

t = spm1d.stats.ttest2(YA, YB, 'equal_var', false)

One or two-tailed Interpolation of clusters



ti = t.inference(0.05, 'two_tailed', false, 'interp', true)

Circular fields

ti = t.inference(0.05, 'circular', true)

Region of interest



In [21]:

dataset = spm1d.data.uv1d.t1.SimulatedPataky2015a();
[Y,mu]  = deal(dataset.Y, dataset.mu);

% Create a region  of interest (ROI):
roi        = false( 1, size(Y,2) );
roi(71:80) = true;
plot(roi); title('Defined ROI');



In [22]:

%(1) Conduct SPM analysis:
spm       = spm1d.stats.ttest(Y - mu, 'roi', roi);
spmi      = spm.inference(0.05, 'two_tailed', false, 'interp',true)
;
plot(spmi)

5. Help
spm1d website: www.spm1d.org

matlab help forum: https://github.com/0todd0000/spm1dmatlab/issues
(https://github.com/0todd0000/spm1dmatlab/issues) 
Python help forum: https://github.com/0todd0000/spm1d/issues
(https://github.com/0todd0000/spm1d/issues)

https://github.com/0todd0000/spm1dmatlab/issues
https://github.com/0todd0000/spm1d/issues
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SPM Methods
[Data treatment – smoothing, averaging]

a) Statistical tests used
b) SPM code & analysis software
c) Refer to key SPM/RFT literature

– Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ 
(1995). Statistical parametric maps in functional imaging: a general 
linear approach. Human Brain Mapping 2, 189–210.

– SPM documentation repository, Wellcome Trust Centre for 
Neuroimaging: http://www.fil.ion.ucl.ac.uk/spm/doc/

26 July 2017

ISB Brisbane
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SPM Methods
[Data treatment – smoothing, averaging]

a) Statistical tests used
b) SPM code & analysis software
c) Refer to key SPM/RFT literature
d) Define terminology 
e) Specify alpha – correction?
f) How results will be interpreted

26 July 2017
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Example
Statistical parametric mapping (SPM, Friston et al., 2007) was used to statistically compare walking speeds. Specifically a SPM two-tailed paired t-test 
was used to compare the longitudinal arch angle during normal versus fast walking (α=0.05). The scalar output statistic, SPM{t}, was calculated 
separately at each individual time node and is referred to as a Statistical Parametric Map. At this stage it is worth noting that SPM refers to the overall 
methodological approach, and SPM{t} to the scalar trajectory variable. The calculation of SPM{t} simply indicates the magnitude of the Normal-Fast 
differences, therefore with this variable alone we cannot accept or reject our null hypothesis. To test our null hypothesis we next calculated the 
critical threshold at which only α % (5%) of smooth random curves would be expected to traverse. This threshold is based upon estimates of 
trajectory smoothness via temporal gradients [Friston et al., 2007] and, based on that smoothness, Random Field Theory expectations regarding the 
field-wide maximum [Adler and Taylor, 2007]. Conceptually, a SPM paired t-test is similar to the calculation and interpretation of a scalar paired t-
test; if the SPM{t} trajectory crosses the critical threshold at any time node, the null hypothesis is rejected. Typically, due to waveform smoothness 
and the inter-dependence of neighbouring points, multiple adjacent points of the SPM{t} curve often exceed the critical threshold, we therefore call 
these “supra-threshold clusters”. SPM then uses Random Field Theory expectations regarding supra-threshold cluster size to calculate cluster specific 
p-values which indicate the probability with which supra-threshold clusters could have been produced by a random field process with the same 
temporal smoothness [Adler and Taylor, 2007]. All SPM analyses were implemented using the open-source spm1d code (v.M0.1, www.spm1d.org) in 
Matlab (R2014a, 8.3.0.532, The Mathworks Inc, Natick, MA).
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Example
Statistical parametric mapping (SPM, Friston et al., 2007) was used to statistically compare walking speeds. Specifically a SPM two-tailed paired t-test 
was used to compare the longitudinal arch angle during normal versus fast walking (α=0.05). The scalar output statistic, SPM{t}, was calculated 
separately at each individual time node and is referred to as a Statistical Parametric Map. At this stage it is worth noting that SPM refers to the overall 
methodological approach, and SPM{t} to the scalar trajectory variable. The calculation of SPM{t} simply indicates the magnitude of the Normal-Fast 
differences, therefore with this variable alone we cannot accept or reject our null hypothesis. To test our null hypothesis we next calculated the 
critical threshold at which only α % (5%) of smooth random curves would be expected to traverse. This threshold is based upon estimates of 
trajectory smoothness via temporal gradients [Friston et al., 2007] and, based on that smoothness, Random Field Theory expectations regarding the 
field-wide maximum [Adler and Taylor, 2007]. Conceptually, a SPM paired t-test is similar to the calculation and interpretation of a scalar paired t-
test; if the SPM{t} trajectory crosses the critical threshold at any time node, the null hypothesis is rejected. Typically, due to waveform smoothness 
and the inter-dependence of neighbouring points, multiple adjacent points of the SPM{t} curve often exceed the critical threshold, we therefore call 
these “supra-threshold clusters”. SPM then uses Random Field Theory expectations regarding supra-threshold cluster size to calculate cluster specific 
p-values which indicate the probability with which supra-threshold clusters could have been produced by a random field process with the same 
temporal smoothness [Adler and Taylor, 2007]. All SPM analyses were implemented using the open-source spm1d code (v.M0.1, www.spm1d.org) in 
Matlab (R2014a, 8.3.0.532, The Mathworks Inc, Natick, MA).
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To compare between groups, a curve analysis was performed
using statistical parametric mapping (SPM) (13). Initially,
ANOVA over the normalized time series was used to establish the
presence of any significant differences between the three groups.
If statistical significance was reached, post hoc t-tests over the
normalized time series were used to determine between which
groups significant differences occurred. For both the ANOVA and
t-test analyses, SPM involved four steps. The first was computing
the value of a test statistic at each point in the normalized time
series. The second was estimating temporal smoothness on the
basis of the average temporal gradient. The third was computing
the value of test statistic above which only > = 5% of the data
would be expected to reach had the test statistic trajectory
resulted from an equally smooth random process. The last was
computing the probability that specific suprathreshold regions
could have resulted from an equivalently smooth random process.
Technical details are provided elsewhere (13,27).



Reporting SPM results
t-tests
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the “SPM” variable
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the “SPMi” variable
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Random
data Experiment p valueMetric

t valuetwo sample

Infinite set of experiments

One experiment



SPM and SPMi
SPM

Name Size or value
STAT T
z 1x100 double
nNodes 100
df [1,9]
fwhm 11.2192
resels [1,8.8242]
sigma2 1x100 double
r []
isregress 0
beta 1x100 double
R 10x100 double

SPMi
Name Size or value
alpha 0.05
two_tailed 0
zstar 3.8213
h0reject 1
p_set 0.031
p 0.031
nClusters 1
clusters 1x1 cell
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Results

Key information to present:
a) Was the critical threshold exceeded?
b) Direction of effect
c) Consequence for the null hypothesis
d) Descriptive data:

critical threshold, p-value/s, number of supra-threshold clusters, 
extent of clusters, degrees of freedom.
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Results section bad example

The mean arch angles during normal and fast walking 
were highly similar for the majority of time except for 
the very last bit of the walking cycle (figure 1a). The 
arch angle during fast walking were significantly 
different between normal and fast walking (figure 1b, 
p=0.024). 
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Results section ‘better’ example

The mean arch angles during normal and fast walking were highly similar for the 
majority of time (figure 1a). However one supra-threshold cluster (96-100%) exceeded 
the critical threshold of 3.933 as the arch angle during fast walking was significantly 
more negative than during normal walking (figure 1b). The precise probability that a 
supra-threshold cluster of this size would be observed in repeated random samplings 
was p=0.024. The null hypothesis was therefore rejected.
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Figure caption

Figure 1 a) Mean trajectories for longitudinal arch angles during 
normal (black) and fast (red) walking. b) The paired samples t-
test statistic SPM {t}. The critical threshold of 3.933 (red dashed 
line) was exceeded at time = 96% with a supra-threshold cluster 
probability value of p=0.024 indicating a significantly more 
negative angle in the fast condition.
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Reporting SPM results
Regression

26 July 2017

ISB Brisbane



Regression
spm = spm1d.stats.regress(Y, x);
spmi = spm.inference(0.05, 'two_tailed', true);

“x” independent variable 
walking speed 

“Y” dependent variable
vertical GRF trajectories 
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SPM output
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SPM output
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The t value is the statistic upon which 
statistical inferences (p values) are based. 

The regression coefficient r and t value are 
alternative expressions of effect 
magnitude, and map directly to each other 
given the sample size. 



Regression interpretation

There was a significant relationship between 
walking speed and vGRF. A greater walking 
speed significantly increased the vGRF during 
the first and last 30% stance but significantly 
reduced GRF from ~30-70% stance. As random 
data would produce this effect <5% time the null 
hypothesis was therefore rejected. 
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Example methods/results
• Pataky TC (2010). Generalized n-dimensional biomechanical field analysis using statistical 

parametric mapping. Journal of Biomechanics 43, 1976-1982.
• Pataky TC (2012) One-dimensional statistical parametric mapping in Python. Computer 

Methods in Biomechanics and Biomedical Engineering. 15, 295-301.
• Pataky TC, Robinson MA, Vanrenterghem J (2013). Vector field statistical analysis of kinematic 

and force trajectories. Journal of Biomechanics 46 (14): 2394-2401.

Applications
• Vanrenterghem, J., Venables, E., Pataky, T., Robinson, M. (2012). The effect of running speed 

on knee mechanical loading in females during side cutting. Journal of Biomechanics, 45, 
2444-2449.

• De Ridder, R., Willems, T., Vanrenterghem, J., Robinson, M., Pataky, T., Roosen, P. (2013). Gait 
kinematics of subjects with chronic ankle instability using a multi-segmented foot model. 
Medicine and Science in Sports and Exercise, 45, 2129-2136.

• Robinson, M.A., Donnelly, C.J., Tsao, J., Vanrenterghem, J. (2014).  Impact of knee modelling 
approach on indicators and classification of ACL injury risk. Medicine & Science in Sports & 
Exercise, 46 (7), 1269-1276.

www.spm1d.org
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