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Day 1, Session 1

Introduction

L) Workshop 7-8t July 2014
» e ——r— Ghent University

Goals

* Conduct SPM analyses
* Interpret SPM'’s results

* Report SPM methods and results

¢ Workshop 7-8" July 2014
» e ——r— Ghent University

Not-Goals

* Become highly proficient in Matlab
¢ Understand all aspects of SPM

* Understand all aspects of conventional
statistics

* Focus on structuring and inputting data

[ Workshop 7-8 July 2014
» i o L —— Ghent University




Dataset

slow
— normal | _
fast E

SPM

Statistical Parametric Mapping

Suitable for what biomechanical data?

a) Spatiotemporally smooth

Sampled above Nyquist frequency

Biological tissue viscoelasticity

b) Bounded

Time or space

Warkshop 7-8t July 2014

o 2D




SPM

Statistical Parametric Mapping

* Have you heard of Matlab?
* Have you processed data in Matlab?

* Have you conducted statistical tests
in Matlab?

* Have you validated probability
computations in Matlab?

¢ Workshop 7-8" July 2014
» e ——r— Ghent University
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Questions

MATLAB

* “MATrix LABoratory”
* Numerical array computations
* Useful for data analysis

* Broad functionality:

* Statistics, optimization, signal processing, dynamic
simulation, etc.

[ Workshop 7-8 July 2014
» i o L —— Ghent University




Standard Normal
t withdf =8
t withdf =8

¢ withdf =8

Day/l, Sessign 2

Goals

* t-test recap

* Univariate vs 1DSPM calculations
* Run t-tests in Matlab

* Interpret output variables

T-tests

* one-sample t-test

— Used to test the difference between a single
dataset and a constant (usually zero)

* paired t-test

— Used to test for a differences in repeated
measurements of a sample

* two-sample t-test
— Used to test for a difference between two samples




Experimental scenarios

One subject, multiple trials, two tasks

100 subjects, one body mass value each, compared against
national average

Surgical Procedure A vs. Surgical Procedure B on 40 subjects per
procedure

100 subjects, tested at ages 20 and 30

one subject, measured multiple times, compared to a “norma
database

1

Controls vs. Patients
Multiple subjects performing two different tasks once each

M‘:—-

First, we need to set up our null hypothesis.

Null Hypothesis (H,)

— Predicts no significant difference

e.g. There is no significant difference in vertical
ground reaction forces in injured versus uninjured
runners

Univariate
two-sample t-test calculation




Univariate
two-sample t-test

* 1. Compute mean values y, and y,
* 2. Compute the standard deviations s, and sg
* 3. Compute the t test statistic

* 4. Conduct statistical inference. Use o and the
t distribution to compute the critical
threshold. If t > t_ ;.. reject null hypothesis

* 5. Compute exact p-value using t and the
univariate t-distribution.

Univariate
ex_ttest_twosample.m

%(1) Conduct OD test using spmld:
spm = spmld.stats.ttest2(yA, yB);
spmi = spm.inference(0.05, "two_tailed”, false);

yA =10 x 1 double
yB =10x 1 double

Univariate
reporting

* For example:

There was no significant difference between the
male and female reaction times, t(9) = 0.52, p
=0.15.




SPM1D

two-sample t-test

1. Compute mean fields y,(q) and yg(q)
2. Compute the st. dev. of fields s,(g) and sg(q)
3. Compute the t test statistic field

4. Conduct statistical inference.

Use a and the RFT t distribution to compute the critical
threshold. If SPM{t} > t critical reject null hypothesis for
suprathreshold clusters.

5. Compute exact p-value for each cluster using cluster
size and RFT distribution(s) for SPM{t} topology.

SPMQ)

SPM1D
calculation comparison
¢ = Y — Va
%(SAZ +55%)

V5(q) — ¥4(q)

SPM{t} = t(q) ==
6@ + 5@

The calculation of t(g) does not mean that we are
“doing ‘q’ t-tests”.




SPM1D
t-test Matlab function names

spmld.stats.ttest(...) One-sample t test
spmild.stats.ttest_paired(...) Paired t test
spmld.stats_ttest2(....) Two-sample test

SPM1D
ex1ld_ttest2.m

%(1) Conduct SPM analysis:
spm = spmld.stats.ttest2(YA, YB);
spmi = spm.inference(0.05, "two_tailed”,true);

yA =10 x 101 double
yB =10 x 101 double

[ o SEDN—

Over to Matlab




Questions resulting from the analysis
of these datasets?

Helpful tips?

M‘:—-“




Day 1, Session 3

Probability and
Random Field Theory

Goals

* Describe the meaning of p values for
1D analyses

 Simulate experiments using smooth,
random 1D data to validate p values




One can’t use one’s knowledge
about randomness in oranges to
make probabilistic conclusions
regarding apples.

Zero-dimensional data

3.0 +

@
Body mass
0 -+ ' Body height
] Jump height
-3.0 + @

Variables which do not change in space or time




n-dimensional data

Y

One can’t use one’s knowledge
about randomness in 0D data to
make probabilistic conclusions
regarding nD data.

Goals

* Describe the meaning of p values for
1D analyses

 Simulate experiments using smooth,
random 1D data to validate p values




What is a p value?

Demo

Summary

A 4

p value

Random ExperimentHMetric.
data —
t statistic

two sample

1




Demo 1D

Summary 1D

Random »l =
, , I
data ExperlmentHMetnc.p value

two sample t continuum

What is a p value?

The probability that a
completely random nD process
will yield a particular result.




Goals

* Describe the meaning of p values for
1D analyses

 Simulate experiments using smooth,
random 1D data to validate p values

Summary

t values describe experimental data

p values describe random data

Use an nD model of randomness
to make probabilistic
conclusions regarding nD data

p is not:

X The probability that the null hypothesis is true

X The probability that the alternative hypothesis is false

X The probability that the observed result is random

P(data|Hy)
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Day 1 Session 4
Interpretation of t-tests

[ SN

“Is it significant?”

Plan

1. Interpret t-test results

2. Describe the methods used
3. Present the results

4. Reviewer hints and tips

[ SO




1. Interpretation

i
1

the “SPM” variable

the “SPMi” variable

spm1d.stats.spm SPMI




Interpretation
ex1ld_ttest.m

45¢ -
4| peoam

EPM[1]

- —

>> disp(spmi)

SPM(t} inference
z: [1x100 double]
df: [1 9]

fwhm: 11.2615
resels: [1 8.7910]
alpha: 0.0500
zstar: 3.8213
p_set: 0.0310

p: 0.0310

Key aspects — Interpretation
ex1ld_ttest paired.m




>> disp(spmi)

SPM(t} inference
z: [1x101 double]
df: [1 9]

fwhm: 20.3720
resels: [1 4.9087]
alpha: 0.0500
zstar: 3.4059
p_set: 0.0353

p: 0.0353

Cluster specific p-values

Identically smooth random
1D data would produce a
cluster of this breadth with a
probability of p=0.019

Clusters
spmi.clusters{l}.details

spmid.geom.Cluster

Constructor Summary

Proparty Summary




2. Methods

What are the contents of a good methods
section?

SPM Methods

a) Statistical tests used

b) SPM code & analysis software
c) Refer to key SPM/RFT literature
d) Define terminology

e) Specify alpha — correction?

f) How results will be interpreted

[also relevant: data treatment, smoothing, averaging]

T SN

a) Statistical tests used

* e.g. SPM One sample t-test
— One or two-tailed?
— Dependent variable tested
— Independent variable

“A SPM two-tailed two-sample t-test was used to
compare male versus female knee angles.”

[ SO




b) SPM code

* Can refer to http://www.spmid.org/ for open
source code

* The current Python version of spm1d is:

* The current Matlab version of spmid is:

Software

Python 2.7.2; Enthought Python Distribution, Austin, TX.
Matlab R2016a (8.3.0.532), The Mathworks Inc, Natick, MA.
[Home = Help = About Matlab]

[ SN

c) Key SPM/RFT literature

SPM literature (Neuroimaging)

« Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD. (Eds.) Statistical
parametric mapping: the analysis of functional brain images. London: Elsevier;
2007.

~  Abook that describes the SPM analysis concepts with specific application to brain images.
*  Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995).
Statistical parametric maps in functional imaging: a general linear approach.
Human Brain Mapping 2, 189-210.
* SPM documentation repository, Wellcome Trust Centre for Neuroimaging:
http://www.fil.ion.ucl.ac.uk/spm/doc,

SPM/RFT Literature (Biomechanics)

* Pataky, T. C.. (2012). One-dimensional statistical parametric mapping in python.
Computer Methods in Biomechanics and Biomedical Engineering, 15(3):295-301.

* Pataky, T. C. (2016). Rft1d: Smooth one-dimensional random field upcrossing
probabilities in python. Journal of Statistical Software, page in press.

T SN

d) Terminology —

* SPM vs SPM({t}
SPM refers to the overall methodological approach
SPM({t} to the scalar trajectory variable

* Suprathreshold cluster

“adjacent points of the SPM{t} curve often exceed the critical
threshold, we therefore call these “supra-threshold clusters”.

* Critical threshold
“Value at which only o % (5%) of smooth random curves would
be expected to cross”

[ SO




e) Specify alpha

* You may wish to correct alpha for multiple
comparisons / dependent variables.

* Remember this would have to be entered
manually in the code.

Perteioas = 1 = (1 — &)¥¥

“To retain a formBy-wise Type 1 error nxte of @ = 0.05 we
adopted a Sidik correcied threshold of 0.012 for four

marnarsnae &

[ SN

f) How results will be interpreted

* What does a high value of SPM{t} mean?

* What is the consequence of crossing the
critical threshold (or not)?

“if the SPM({t} trajectory crosses the critical threshold at
any time node, the null hypothesis is rejected”

T SN

An example method

* Refer to handout
“Day1Session4 - Example method write-up.docx”

Task — Using the colour-coding in the bullet-points,
colour the text in the example write-up to match the
relevant bullet-point.

The first sentence has been started as an example.
What could be more concise?

[ SO




Example methods to refer to

*  Pataky TC (2010). i i i i ical field analysis using statistical
parametric mapping. Journal of Biomechanics 43, 1976-1982.

«  Pataky TC (2012) One-dimensional statistical parametric mapping in Python. Computer
Methods in Biomechanics and Biomedical Engineering. 15, 295-301.

*  Pataky TC, Robinson MA, Vanrenterghem J (2013). Vector field statistical analysis of kinematic
and force trajectories. Journal of Biomechanics 46 (14): 2394-2401.

Applications

+  Vanrenterghem, J., Venables, E., Pataky, T., Robinson, M. (2012). The effect of running speed
on knee mechanical loading in females during side cutting. Journal of Biomechanics, 45,
2444-2449.

* De Ridder, R., Willems, T, Vanrenterghem, J., Robinson, M., Pataky, T., Roosen, P. (2013). Gait
kinematics of subjects with chronic ankle instability using a multi-segmented foot model.
Medicine and Science in Sports and Exercise, 45, 2129-2136.

*  Robinson, M.A., Donnelly, C.J.,, Tsao, J., Vanrenterghem, J. (2014). Impact of knee modelling
approach on indicators and classification of ACL injury risk. Medicine & Science in Sports &
Exercise, 46 (7), 1269-1276.

[ SN

3. Presentation of results

* Key information to present:

a) Was the critical threshold exceeded?
b) Direction of effect

c) Consequence for the null hypothesis
d) Descriptive data:

critical threshold, p-value/s, number of supra-
threshold clusters, extent of clusters, degrees of
freedom.

T SN

Figure caption

80 (M T

(] I CECEE] o Y n 0 = W

Figure 1 a) Mean tr‘ajectones for longitudinal arch angles during
normal (black) and fast (red) walking. b) The paired samples t-
test statistic SPM {t}. The critical threshold of 3.933 (red dashed
line) was exceeded at time = 96% with a supra-threshold cluster
probability of p=0.024 indicating a significantly more negative
angle in the fast condition.

[ SO




Results section example

Mean longitudinal arch angles during normal and fast walking
were highly similar for the majority of time (figure 1a). However
one supra-threshold cluster (96-100%) exceeded the critical
threshold of 3.933 as the AO(MF-MT) angle during fast walking
was significantly more negative! than during normal walking
(figure 1b). The precise probability that a supra-threshold cluster
of this size would be observed in repeated random samplings
was p=0.024. The null hypothesis was therefore rejected.

max 0 N 0 O )

Example 1: Data and stats

Sagittal Frontal Transverse

L ame2n

b} 10864340 i) 738 388

Ext—Int +

= 0006

SPM 1)

Stance phase (%) Stance phase (%) Stance phase (%)

T SN

Example 2: Shading

i HipFlexExt HipAddAbd

70 - — 40 — -

60 I 30

50 | 0
—~ | ~ 0] = -
. | > [ - 4
2 ) | 2 0 P
g 0 | g 10 -
< < -

1o -20

i 30

10 - - 40 -

0 20 40 60 KO 100 0 20 40 60 80 100
Guit Cycle (%) Gait Cycle (%)
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Example 3: Small bars

o HipFlexExt 40 HipAddAbd
60| 1 30}
50 20}
~ 40fs ~ 1o}
Z a0f z 0
= =
Z w} 2 o}
1} 20}
1] an
10 — 40
0 20 40 60 80 100 0 20 40 60 80 100

Gait Cyele (%) Gait Cyele (%)

[ SN

4. Reviewers — Hints and tips

Anticipate some resistance

Be consistent throughout

Present statistical results with original data

Highlight similarity to univariate interpretation
* Refer to papers that use similar analyses
* Benefits of SPM vs PCA, FDA etc

* Use supplementary material where
appropriate

T SN

Tasks — Analyse and report...

Analyse and report the results of the data
paired_data.mat

1. Write the methods for the scenario below
— Knee flexion angle data during running
— 34 male participants
— Two speed conditions
— Data are normalised to the stance phase

2. Write a figure caption
3. Write a results section

[ SO

10



Day 2, Session 1

Registration and smoothing

2000 150 -
= Feal B 4 | m—Real
—10 Hz cut-off "

Force 10, marker 10

=== =50 hz cut-off 100 ~Force 50, marker 10

1500

1000

Force (N)

s00

Hip flexion moment (Nm)

Goals

* Refresh smoothing and registration principles
of biomechanical data

* |dentify how smoothness and registration can
affect SPM outcome

Overview

* Sampling of biomechanical signals

* Smoothing of biomechanical signals
* Registration of biomechanical signals
* Exercise on effect smoothing on SPM




Sampllng blomechanlcal data

F\(

\u{"

\H
W\

Signal 2: reconstructed

1
05
0
05
-1
0 02 04 06 08 1
(d) Time (s)

\\\\\\\

Smoothing biomechanical data

Remove <,j> Retain

artefact signal

T SN

Smoothing

Kinematic data




Smoothing

Force data
2000
w— Real
— |0 HZ cut=off
=== =50 hz cut—off
1500

1000

Force (N}

500

Smoothing
Kinetic data

GRF Joint moment
2000 150 -
— Real B o | m——Real
— 10 Hz cut-off = Force 10, marker 10
== =50 hz cut—off 100 ) ===Force 50, marker 10
1500 .
£
Z
= £
Z 1000 H
8 5
5 E
2 <
2
500 §
= .
-3 "
I i
o =100 A

Kristianslund et al. (2012) Effect of low-pass filtering on joint moments from
inverse dynamics: implications for injury prevention. J Biomech, 45, 666-671.

o

Smoothing
EMG data
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Y
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s e ot fibier OO

D SN




End point effects

reflected 10 original data
points at start | |
* oints at end

padded data

Registration
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Registration

Registration

|
s " 5 &
Peak pressure (Nem?)

Image taken from Pataky et al., Gait Posture, Vol. 29, pp. 477-482, 2009

Registration

Moment (Km])

Percentage of push (%)




Linear registration

Temporal context is retained uniformly

Hngha {degrees)
3
D

N

Relevance to SPM

* Sampling affects SPM when Nyquist is violated
* Smoothing affects dependence ‘nodes’

x=ax+ax  +ax ,—bx —bal,

=> Affects SPMi (see next slide)

T SN

Inference
RFT handles the issue of multiple comparisons and
statistical inference . (Adler, 1981)

(3) Uncorrelated data (b) Smoothed data (FWHIM=20%) (3) Smoothed data (FWIIM=ox)

If neighbouring data are completely uncorrelated we'd conduct
100 independent t tests. If data are correlated then we have
<100 independent tests.

The temporal (or spatial) gradient estimates # independent
processes

o —— i L Ewr




Relevance to SPM

* Sampling affects SPM when Nyquist is violated
* Smoothing affects dependence ‘nodes’

X =a.x+ax +ax , —bx’ —bxl

=> Affects SPMi

* Registration affects t-curve
=> Affects SPM{t}

[ SN

Exercise

Smoothness of group trajectories affects
outcome SPM by lowering threshold

— Can we investigate relationship smoothness and
threshold?

z=randnld(J, Q, fwhm);
spm = spm1d.stats.ttest(z);
spmi = spm.inference(0.05);

Crtical thrashokd

FWHN

T SN

Sensitivity of data processing

e.g. treat smoothness as a sensitivity measure

3 T ——n
i ::; \' AN, S
i ' A\ IS |

| o v e B e e ]

[ SO




Day 2 Session 3
Interpretation of Regression
& ANOVA

LD i e m—

Plan

* Regression example
—Code
—Interpretation

* ANOVA example
—Code
—Interpretation

T SN

Regression

%(1) Conduct SPM analysis:
spm = spmld.stats.regress(Y, X);
spmi = spm.inference(0.05, "two_tailed”, true);

“x” independent variable
1 walking speed
“Y” dependent variable
1 vertical ground
reaction force




SPM output

20% 50% 92%
4 24
8 g o
3 08 E
w 1} !h% i
['4 3
8: o | &
06|
L] of
1
04
0 2 PR s 0 2 4

Why a SPM{t} value?

The t value is the statistic upon which
statistical inferences (p values) are
based.

SPM{t}

o} The regression coefficient r and t value
are alternative expressions of effect
magnitude, and map directly to each
! other given the sample size.

spm.r is the correlation coefficient




Regression interpretation

There was a significant relationship between
walking speed and vGRF. A greater walking
speed significantly increased the vGRF during
the first and last 30% stance but significantly
reduced GRF from ~30-70% stance. As random
data would produce this effect <5% time. The
null hypothesis was therefore rejected.

[ SN

Figure caption

Figure 1. A statistical inference curve indicating significant relationships
between walking speed and vertical ground reaction force. There were
significant positive relationships during early and late stance and a significant
negative relationship during mid-stance.

T SN

Random effects analysis

One subject’s data All subjects
spmld.stats.regress(speed,mom);

Knee moment Knee moment

£

w0 P S "
Time (Y%stancc) L

Time (Yestance)

)
m L - ——Vanrenterghem et al. (2012) JoB




ANOVA

* Many ANOVA types

SPM code

%(1) Conduct SPM analysis:

Angie [G6g)

spm = spmld.stats.anoval(Y, A);

spmi = spm.inference(0.05);

%(1) Conduct SPM analysis:

spm_bs = spmld.stats.anoval(Y, A);
%between-subjects model

spm = spmld.stats.anovalrm(Y, A, SUBJ);
Y%within-subjects model

spmi = spm.inference(0.05);

)

D P - =
One-way ANOVA
spmld.stats.anoval(CAl,COP,CON);

3 groups

b1 7 =
5 £6 A,
5i £s
= E 4
F3N | !
& 3 =3
2 FE
1 k|
0 20 40 &3 80 100 0 a0 & 80 100
Tireve Time
De

D SN

foot kinematics

Critical F
threshold 6.746
(at a =0.05)

Ridder et al. (2013). MSSE




F B
ANOVA post-hoc ‘
spmld.stats.ttest2(CAl,CON); J, *
Rigid Foot .
CAl vs CON . {';\]_w (_'l)'l? ., (U'\ \.‘-_( U!"

Stnce Phasc (%) Stance Phase (%) Stance Phase (%)

De Ridder et al. (2013). MSSE

[ SN

AVONA interpretation

* There was a significant difference in angle
between the three groups between ~20-60%
stance. Identically smooth random 1D data
would produce a cluster of this breadth with a
probability of p<0.05. Post-hoc independent t-
tests showed that CAl and COP were both
significantly greater than the CON group.

T SN

One way RM ANOVA

%(1) Conduct SPM analysis:
spm_bs = spmld.stats.anoval(yY, A);
%between-subjects model

spm = spmld.stats.anovalrm(Y, A, SUBJ);
Y%within-subjects model

spmi = spm.inference(0.05);




SPM output

Between
subjects
analysis

JoB




Tasks — Analyse and report...

* Finish ANOVA worksheet
* Analyse the example datasets 1-4
1. Write the analysis code
2. Plot the results
3. Write a figure caption
4. Write up the results




Day 2, Session 4

Introduction to Vector
Analysis with SPM

Topics

* Overview

* False positives

* Vector field statistics

* Reminder of SPM limitations
* Concluding remarks

Topics

* Overview

* False positives

 Vector field statistics

* Reminder of SPM limitations
* Concluding remarks




Scalar 1D  Vector 1D

Univariate 1D Multivariate 1D
. K/F‘ﬁ.\\ ) : -
W N"7/\\ )
t tests Hotelling’s T? tests
regression CCA
ANOVA MANOVA

Vector data: forces

(Tlﬂle’Fy)




Vector data: EMG

(EMG1,EMGD) (Time,EMG2)

Robinson, Vanrenterghem & Pataky (2014)

Topics

* Overview

* False positives

* Vector field statistics

* Reminder of SPM limitations
* Concluding remarks

False positives

Demo

’::EE‘Q




Methods

» Assembled ~1000 vector trajectories from public
datasets

» Estimated the median smoothness for different
classes of data

* Kinematics, dynamics, EMG

» Computed false positive rates for OD thresholds
* Analytically
* Validated using simulation

Results

* Probability of a false positive:

» One scalar trajectory
» p=0.382

» One 3-component vector trajectory
*p=0.764

» Two 3-component vector trajectories
*p=0.945

Topics

* Overview

* False positives

* Vector field statistics
* Reminder of SPM limitations
* Concluding remarks




Example 1: COP
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Pataky et al. (2014) JoB

10 (a) Main test: 7(q)

SPM{t}

w0 p <0001

p=000549

SPM{T%}

o[ ® Post hoc: r.()

Rotation (deg)
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s | (b) Post hoc: r.(q)

I (a) M;ain test:l r(q)

SPM{t}

L p < 0.001
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SPM{t}

~
g

s| () Post hoc: T,(q)

Rotation (deg)

p < 0.001 —

Internal rotation

External rotation

L

20 40 60
Time (% stance)

80

100

Example 2: Knee moments

Knee Ang @ time0

Sagittal Knee Moment

Ext- Flex+ (Nm kg)

40 60
Time %

Frontal Knee Moment

Time %

Transverse Knee Moment
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CCA

a) KFA vs. Mxyz

Topics

* Overview
* False positives

* Vector field statistics

* Reminder of SPM limitations
* Concluding remarks

SPM limitations

SPM has same limitations as other methods e.g. non-
random sampling, non-blind experimentation, non-
homologous data....

Requires data registration (temporal normalization)

SPM’s procedures are more complex, especially RFT-
based inference

Accessibility (Python/Matlab programming)




SPM limitations

~

Topics

* Overview
* False positives
* Vector field statistics

* Reminder of SPM limitations

* Concluding remarks

Concluding remarks

* Support:
— Website WWW.SPM1D.0ORG
— Handouts + notes + worksheets workshop
— Todd, Mark, Jos

* Certificate

» Feedback
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